An optical fiber (or fibre) is a glass or plastic fiber designed to guide light along its length by confining as much light as possible in a propagating form. In fibers with large core diameter, the confinement is based on total internal reflection. In smaller diameter core fibers, (widely used for most communication links longer than 200 meters) the confinement relies on establishing a waveguide. Fiber optics is the overlap of applied science and engineering concerned with such optical fibers. Optical fibers are widely used in fiber-optic communication, which permits transmission over longer distances and at higher data rates than other forms of wired and wireless communications. They are also used to form sensors, and in a variety of other applications.
The term optical fiber covers a range of different designs including graded-index optical fibers, step-index optical fibers which are characteristics of an optical fiber and different types of optical fiber as singlemode fibers (SMF) in which there are two kinds of fibers, nonzero dispersion-shifted fibers (NZDSF) and dispersion-shifted fibers (DSF), multimode fibers (MMF), birefringent polarization-maintaining fibers (PMF) and more recently photonic crystal fibers (PCF), with the design and the wavelength of the light propagating in the fiber dictating whether or not it will be multi-mode optical fiber or single-mode optical fiber. Because of the mechanical properties of the more common glass optical fibers, special methods of splicing fibers and of connecting them to other equipment are needed. Manufacture of optical fibers is based on partially melting a chemically doped preform and pulling the flowing material on a draw tower. Fibers are built into different kinds of cables depending on how they will be used.
Applications
Optical fiber communication
Optical fiber can be used as a medium for telecommunication and networking because it is flexible and can be bundled as cables. It is especially advantageous for long-distance communications, because light propagates through the fiber with little attenuation compared to electrical cables. This allows long distances to be spanned with few repeaters. Additionally, the light signals propagating in the fiber can be modulated at rates as high as 40 Gb/s [Ramachandran (2001), "Higher-order-mode dispersion compensation: enabler for long distance WDM at 40 Gb/sec", Proceedings of the SPIE 4532: 220-226], and each fiber can carry many independent channels, each by a different wavelength of light (wavelength-division-multiplex WDM). In total, a single fiber-optic cable can carry data at rates as high as 14.4 Pb/s (circa 14 million Gb/s).[citation needed] Over short distances, such as networking within a building, fiber saves space in cable ducts because a single fiber can carry much more data than a single electrical cable. Fiber is also immune to electrical interference, which prevents cross-talk between signals in different cables and pickup of environmental noise. Also, wiretapping is more difficult compared to electrical connections, and there are concentric dual core fibers that are said to be tap-proof. Because they are non-electrical, fiber cables can bridge very high electrical potential differences and can be used in environments where explosive fumes are present, without danger of ignition.
Although fibers can be made out of transparent plastic, glass, or a combination of the two, the fibers used in long-distance telecommunications applications are always glass, because of the lower optical attenuation. Both multi-mode and single-mode fibers are used in communications, with multi-mode fiber used mostly for short distances (up to 500 m), and single-mode fiber used for longer distance links. Because of the tighter tolerances required to couple light into and between single-mode fibers (core diameter about 10 micrometers), single-mode transmitters, receivers, amplifiers and other components are generally more expensive than multi-mode components.
Fiber optic sensors
Optical fibers can be used as sensors to measure strain, temperature, pressure and other parameters. The small size and the fact that no electrical power is needed at the remote location gives the fiber optic sensor advantages to conventional electrical sensor in certain applications.
Optical fibers are used as hydrophones for seismic or SONAR applications. Hydrophone systems with more than 100 sensors per fiber cable have been developed. Hydrophone sensor systems are used by the oil industry as well as a few countries' navies. Both bottom mounted hydrophone arrays and towed streamer systems are in use. The German company Sennheiser developed a microphone working with a laser and optical fibers[2].
Optical fiber sensors for temperature and pressure have been developed for downhole measurement in oil wells. The fiber optic sensor is well suited for this environment as it is functioning at temperatures too high for semiconductor sensors (Distributed Temperature Sensing).
Another use of the optical fiber as a sensor is the optical gyroscope which is in use in the Boeing 767 and in some car models (for navigation purposes) and the use in Hydrogen microsensors.
Fiber-optic sensors have been developed to measure co-located temperature and strain simultaneously with very high accuracy[3]. This is particularly useful to acquire information from small complex structures.
Other uses of optical fibers
Fibers are widely used in illumination applications. They are used as light guides in medical and other applications where bright light needs to be shone on a target without a clear line-of-sight path. In some buildings, optical fibers are used to route sunlight from the roof to other parts of the building (see non-imaging optics). Optical fiber illumination is also used for decorative applications, including signs, art, and artificial Christmas trees. Swarovski boutiques use optical fibers to illuminate their crystal showcases from many different angles while only employing one light source. Optical fiber is an intrinsic part of the light-transmitting concrete building product, LiTraCon.
Optical fiber is also used in imaging optics. A coherent bundle of fibers is used, sometimes along with lenses, for a long, thin imaging device called an endoscope, which is used to view objects through a small hole. Medical endoscopes are used for minimally invasive exploratory or surgical procedures (endoscopy). Industrial endoscopes (see fiberscope or borescope) are used for inspecting anything hard to reach, such as jet engine interiors.
An optical fiber doped with certain rare-earth elements such as erbium can be used as the gain medium of a laser or optical amplifier. Rare-earth doped optical fibers can be used to provide signal amplification by splicing a short section of doped fiber into a regular (undoped) optical fiber line. The doped fiber is optically pumped with a second laser wavelength that is coupled into the line in addition to the signal wave. Both wavelengths of light are transmitted through the doped fiber, which transfers energy from the second pump wavelength to the signal wave. The process that causes the amplification is stimulated emission.
Optical fibers doped with a wavelength shifter are used to collect scintillation light in physics experiments.
Optical fiber can be used to supply a low level of power (around one watt) to electronics situated in a difficult electrical environment. Examples of this are electronics in high-powered antenna elements and measurement devices used in high voltage transmission equipment.
Multimode fiber
Fiber with large (greater than 10 μm) core diameter may be analyzed by geometric optics. Such fiber is called multimode fiber, from the electromagnetic analysis (see below). In a step-index multimode fiber, rays of light are guided along the fiber core by total internal reflection. Rays that meet the core-cladding boundary at a high angle (measured relative to a line normal to the boundary), greater than the critical angle for this boundary, are completely reflected. The critical angle (minimum angle for total internal reflection) is determined by the difference in index of refraction between the core and cladding materials. Rays that meet the boundary at a low angle are refracted from the core into the cladding, and do not convey light and hence information along the fiber. The critical angle determines the acceptance angle of the fiber, often reported as a numerical aperture. A high numerical aperture allows light to propagate down the fiber in rays both close to the axis and at various angles, allowing efficient coupling of light into the fiber. However, this high numerical aperture increases the amount of dispersion as rays at different angles have different path lengths and therefore take different times to traverse the fiber. A low numerical aperture may therefore be desirable.
In graded-index fiber, the index of refraction in the core decreases continuously between the axis and the cladding. This causes light rays to bend smoothly as they approach the cladding, rather than reflecting abruptly from the core-cladding boundary. The resulting curved paths reduce multi-path dispersion because high angle rays pass more through the lower-index periphery of the core, rather than the high-index center. The index profile is chosen to minimize the difference in axial propagation speeds of the various rays in the fiber. This ideal index profile is very close to a parabolic relationship between the index and the distance from the axis.
Singlemode fiber
Fiber with a core diameter less than about ten times the wavelength of the propagating light cannot be modeled using geometric optics. Instead, it must be analyzed as an electromagnetic structure, by solution of Maxwell's equations as reduced to the electromagnetic wave equation. The electromagnetic analysis may also be required to understand behaviors such as speckle that occur when coherent light propagates in multi-mode fiber. As an optical waveguide, the fiber supports one or more confined transverse modes by which light can propagate along the fiber. Fiber supporting only one mode is called single-mode or mono-mode fiber. The behavior of larger-core multimode fiber can also be modeled using the wave equation, which shows that such fiber supports more than one mode of propagation (hence the name). The results of such modeling of multi-mode fiber approximately agree with the predictions of geometric optics, if the fiber core is large enough to support more than a few modes.
The waveguide analysis shows that the light energy in the fiber is not completely confined in the core. Instead, especially in single-mode fibers, a significant fraction of the energy in the bound mode travels in the cladding as an evanescent wave.
The most common type of single-mode fiber has a core diameter of 8 to 10 μm and is designed for use in the near infrared. The mode structure depends on the wavelength of the light used, so that this fiber actually supports a small number of additional modes at visible wavelengths. Multi-mode fiber, by comparison, is manufactured with core diameters as small as 50 microns and as large as hundreds of microns.