Google

Sunday, September 30, 2007

Optical fiber cables

In practical fibers, the cladding is usually coated with a tough resin buffer layer, which may be further surrounded by a jacket layer, usually plastic. These layers add strength to the fiber but do not contribute to its optical wave guide properties. Rigid fiber assemblies sometimes put light-absorbing ("dark") glass between the fibers, to prevent light that leaks out of one fiber from entering another. This reduces cross-talk between the fibers, or reduces flare in fiber bundle imaging applications.[8]
For indoor applications, the jacketed fiber is generally enclosed, with a bundle of flexible fibrous polymer strength members like Aramid (e.g. Twaron or Kevlar), in a lightweight plastic cover to form a simple cable. Each end of the cable may be terminated with a specialized optical fiber connector to allow it to be easily connected and disconnected from transmitting and receiving equipment.
For use in more strenuous environments, a much more robust cable construction is required. In loose-tube construction the fiber is laid helically into semi-rigid tubes, allowing the cable to stretch without stretching the fiber itself. This protects the fiber from tension during laying and due to temperature changes. Alternatively the fiber may be embedded in a heavy polymer jacket, commonly called "tight buffer" construction. These fiber units are commonly bundled with additional steel strength members, again with a helical twist to allow for stretching.
Another critical concern in cabling is to protect the fiber from contamination by water, because its component hydrogen (hydronium) and hydroxyl ions can diffuse into the fiber, reducing the fiber's strength and increasing the optical attenuation. Water is kept out of the cable by use of solid barriers such as copper tubes, water-repellant jelly, or more recently water absorbing powder, surrounding the fiber.
Finally, the cable may be armored to protect it from environmental hazards, such as construction work or gnawing animals. Undersea cables are more heavily armored in their near-shore portions to protect them from boat anchors, fishing gear, and even sharks, which may be attracted to the electrical power signals that are carried to power amplifiers or repeaters in the cable.
Modern fiber cables can contain up to a thousand fibers in a single cable, so the performance of optical networks easily accommodates even today's demands for bandwidth on a point-to-point basis. However, unused point-to-point potential bandwidth does not translate to operating profits, and it is estimated that no more than 1% of the optical fiber buried in recent years is actually 'lit'.
Modern cables come in a wide variety of sheathings and armor, designed for applications such as direct burial in trenches, dual use as power, installation in conduit, lashing to aerial telephone poles, submarine installation, or insertion in paved streets. In recent years the cost of small fiber-count pole mounted cables has greatly decreased due to the high Japanese and South Korean demand for Fiber to the Home (FTTH) installations.
Termination and splicing
Optical fibers are connected to terminal equipment by optical fiber connectors. These connectors are usually of a standard type such as FC, SC, ST, LC, or MTRJ.
Optical fibers may be connected to each other by connectors or by splicing, that is, joining two fibers together to form a continuous optical waveguide. The generally accepted splicing method is arc fusion splicing, which melts the fiber ends together with an electric arc. For quicker fastening jobs, a "mechanical splice" is used.
Fusion splicing is done with a specialized instrument that typically operates as follows: The two cable ends are fastened inside a splice enclosure that will protect the splices, and the fiber ends are stripped of their protective polymer coating (as well as the more sturdy outer jacket, if present). The ends are cleaved (cut) with a precision cleaver to make them perpendicular, and are placed into special holders in the splicer. The splice is usually inspected via a magnified viewing screen to check the cleaves before and after the splice. The splicer uses small motors to align the end faces together, and emits a small spark between electrodes at the gap to burn off dust and moisture. Then the splicer generates a larger spark that raises the temperature above the melting point of the glass, fusing the ends together permanently. The location and energy of the spark is carefully controlled so that the molten core and cladding don't mix, and this minimizes optical loss. A splice loss estimate is measured by the splicer, by directing light through the cladding on one side and measuring the light leaking from the cladding on the other side. A splice loss under 0.1 dB is typical. The complexity of this process is the major thing that makes fiber splicing more difficult than splicing copper wire.
Mechanical fiber splices are designed to be quicker and easier to install, but there is still the need for stripping, careful cleaning and precision cleaving. The fiber ends are aligned and held together by a precision-made sleeve, often using a clear gel (index matching gel) that enhances the transmission of light across the joint. Such joints typically have higher optical loss, and are less robust than fusion splices, especially if the gel is used. All splicing techniques involve the use of an enclosure into which the splice is placed for protection afterward.
Fibers are terminated in connectors so that the fiber end is held at the end face precisely and securely. A fiber optic connector is basically a rigid cylindrical barrel surrounded by a sleeve that holds the barrel in its mating socket. It can be push and click, turn and latch, or threaded. A typical connector is installed by preparing the fiber end and inserting it into the rear of the connector body. Quick set glue is usually used so the fiber is held securely, and a strain relief is secured to the rear. Once the glue has set, the end is polished to a mirror finish. Various types of polish profile are used, depending on the type of fiber and the application. For singlemode fiber, the fiber ends are typically polished with a slight curvature, such that when the connectors are mated the fibers touch only at their cores. This is known as a "physical contact" (PC) polish. The curved surface may be polished at an angle, to make an angled physical contact (APC) connection. Such connections have higher loss than PC connections, but greatly reduced backreflection, because light that reflects from the angled surface leaks out of the fiber core; the resulting loss in signal strength is known as gap loss.
Various methods to align two fiber ends to each other or one fiber to an optical device (VCSEL, LED, waveguide etc.) have been reported. They all follow either an active fiber alignment approach or a passive fiber alignment approach.

No comments: